Serveur d'exploration Santé et pratique musicale

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

Motorcortical excitability and synaptic plasticity is enhanced in professional musicians.

Identifieur interne : 001866 ( Main/Exploration ); précédent : 001865; suivant : 001867

Motorcortical excitability and synaptic plasticity is enhanced in professional musicians.

Auteurs : Karin Rosenkranz [Royaume-Uni] ; Aaron Williamon ; John C. Rothwell

Source :

RBID : pubmed:17494706

Descripteurs français

English descriptors

Abstract

Musicians not only have extraordinary motor and sensory skills, but they also have an increased ability to learn new tasks compared with non-musicians. We examined how these features are expressed in neurophysiological parameters of excitability and plasticity in the motor system by comparing the results of 11 professional musicians and 8 age-matched non-musicians. Parameters of motor excitability were assessed using transcranial magnetic stimulation (TMS) to measure motor-evoked potentials (MEPs) together with recruitment of corticospinal projections [input-output curve (IOcurve)] and of short-latency intracortical inhibition (SICIcurve). Plasticity, here defined as change of synaptic effectiveness, was tested by measuring MEPs and IOcurves after paired associative stimulation (PAS), which consists of an electric median nerve stimulus repeatedly paired (200 times at 0.25 Hz) with a TMS pulse over the hand motor area. Using an interstimulus interval of 25 ms (PAS25) or 10 ms (PAS10), this leads to long-term potentiation- or long-term depression-like plasticity, respectively. Musicians showed steeper recruitment of MEPs and SICI (IOcurve and SICIcurve). Additionally, PAS25 increased and PAS10 decreased the MEP amplitudes and the slope of the IOcurves significantly more in musicians than in non-musicians. This is consistent with a wider modification range of synaptic plasticity in musicians. Together with the steeper recruitment of corticospinal excitatory and intracortical inhibitory projections, this suggests that they regulate plasticity and excitability with a higher gain than normal. Because some of these changes depend on age at which instrumental playing commenced and on practice intensity, they may reflect an increase in number and modifiability of synapses within the motor area caused by long-term musical practice.

DOI: 10.1523/JNEUROSCI.0836-07.2007
PubMed: 17494706
PubMed Central: PMC6672373


Affiliations:


Links toward previous steps (curation, corpus...)


Le document en format XML

<record>
<TEI>
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en">Motorcortical excitability and synaptic plasticity is enhanced in professional musicians.</title>
<author>
<name sortKey="Rosenkranz, Karin" sort="Rosenkranz, Karin" uniqKey="Rosenkranz K" first="Karin" last="Rosenkranz">Karin Rosenkranz</name>
<affiliation wicri:level="1">
<nlm:affiliation>Sobell Department of Motor Neuroscience and Movement Disorders, Institute of Neurology, London WC1N 3B, United Kingdom. k.rosenkranz@ion.ucl.ac.uk</nlm:affiliation>
<country xml:lang="fr">Royaume-Uni</country>
<wicri:regionArea>Sobell Department of Motor Neuroscience and Movement Disorders, Institute of Neurology, London WC1N 3B</wicri:regionArea>
<wicri:noRegion>London WC1N 3B</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Williamon, Aaron" sort="Williamon, Aaron" uniqKey="Williamon A" first="Aaron" last="Williamon">Aaron Williamon</name>
</author>
<author>
<name sortKey="Rothwell, John C" sort="Rothwell, John C" uniqKey="Rothwell J" first="John C" last="Rothwell">John C. Rothwell</name>
</author>
</titleStmt>
<publicationStmt>
<idno type="wicri:source">PubMed</idno>
<date when="2007">2007</date>
<idno type="RBID">pubmed:17494706</idno>
<idno type="pmid">17494706</idno>
<idno type="doi">10.1523/JNEUROSCI.0836-07.2007</idno>
<idno type="pmc">PMC6672373</idno>
<idno type="wicri:Area/Main/Corpus">001873</idno>
<idno type="wicri:explorRef" wicri:stream="Main" wicri:step="Corpus" wicri:corpus="PubMed">001873</idno>
<idno type="wicri:Area/Main/Curation">001873</idno>
<idno type="wicri:explorRef" wicri:stream="Main" wicri:step="Curation">001873</idno>
<idno type="wicri:Area/Main/Exploration">001873</idno>
</publicationStmt>
<sourceDesc>
<biblStruct>
<analytic>
<title xml:lang="en">Motorcortical excitability and synaptic plasticity is enhanced in professional musicians.</title>
<author>
<name sortKey="Rosenkranz, Karin" sort="Rosenkranz, Karin" uniqKey="Rosenkranz K" first="Karin" last="Rosenkranz">Karin Rosenkranz</name>
<affiliation wicri:level="1">
<nlm:affiliation>Sobell Department of Motor Neuroscience and Movement Disorders, Institute of Neurology, London WC1N 3B, United Kingdom. k.rosenkranz@ion.ucl.ac.uk</nlm:affiliation>
<country xml:lang="fr">Royaume-Uni</country>
<wicri:regionArea>Sobell Department of Motor Neuroscience and Movement Disorders, Institute of Neurology, London WC1N 3B</wicri:regionArea>
<wicri:noRegion>London WC1N 3B</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Williamon, Aaron" sort="Williamon, Aaron" uniqKey="Williamon A" first="Aaron" last="Williamon">Aaron Williamon</name>
</author>
<author>
<name sortKey="Rothwell, John C" sort="Rothwell, John C" uniqKey="Rothwell J" first="John C" last="Rothwell">John C. Rothwell</name>
</author>
</analytic>
<series>
<title level="j">The Journal of neuroscience : the official journal of the Society for Neuroscience</title>
<idno type="eISSN">1529-2401</idno>
<imprint>
<date when="2007" type="published">2007</date>
</imprint>
</series>
</biblStruct>
</sourceDesc>
</fileDesc>
<profileDesc>
<textClass>
<keywords scheme="KwdEn" xml:lang="en">
<term>Adaptation, Physiological (physiology)</term>
<term>Adult (MeSH)</term>
<term>Arm (innervation)</term>
<term>Arm (physiology)</term>
<term>Electromyography (MeSH)</term>
<term>Evoked Potentials, Motor (physiology)</term>
<term>Excitatory Postsynaptic Potentials (physiology)</term>
<term>Female (MeSH)</term>
<term>Humans (MeSH)</term>
<term>Learning (physiology)</term>
<term>Male (MeSH)</term>
<term>Memory (physiology)</term>
<term>Motor Cortex (physiology)</term>
<term>Motor Neurons (physiology)</term>
<term>Motor Skills (physiology)</term>
<term>Movement (physiology)</term>
<term>Muscle, Skeletal (innervation)</term>
<term>Muscle, Skeletal (physiology)</term>
<term>Music (psychology)</term>
<term>Nerve Net (physiology)</term>
<term>Neural Pathways (physiology)</term>
<term>Neuronal Plasticity (physiology)</term>
<term>Pyramidal Tracts (physiology)</term>
<term>Synapses (physiology)</term>
<term>Synaptic Transmission (physiology)</term>
</keywords>
<keywords scheme="KwdFr" xml:lang="fr">
<term>Adaptation physiologique (physiologie)</term>
<term>Adulte (MeSH)</term>
<term>Apprentissage (physiologie)</term>
<term>Aptitudes motrices (physiologie)</term>
<term>Bras (innervation)</term>
<term>Bras (physiologie)</term>
<term>Cortex moteur (physiologie)</term>
<term>Femelle (MeSH)</term>
<term>Humains (MeSH)</term>
<term>Motoneurones (physiologie)</term>
<term>Mouvement (physiologie)</term>
<term>Muscles squelettiques (innervation)</term>
<term>Muscles squelettiques (physiologie)</term>
<term>Musique (psychologie)</term>
<term>Mâle (MeSH)</term>
<term>Mémoire (physiologie)</term>
<term>Plasticité neuronale (physiologie)</term>
<term>Potentiels post-synaptiques excitateurs (physiologie)</term>
<term>Potentiels évoqués moteurs (physiologie)</term>
<term>Réseau nerveux (physiologie)</term>
<term>Synapses (physiologie)</term>
<term>Tractus pyramidaux (physiologie)</term>
<term>Transmission synaptique (physiologie)</term>
<term>Voies nerveuses (physiologie)</term>
<term>Électromyographie (MeSH)</term>
</keywords>
<keywords scheme="MESH" qualifier="innervation" xml:lang="en">
<term>Arm</term>
<term>Muscle, Skeletal</term>
</keywords>
<keywords scheme="MESH" qualifier="physiologie" xml:lang="fr">
<term>Adaptation physiologique</term>
<term>Apprentissage</term>
<term>Aptitudes motrices</term>
<term>Bras</term>
<term>Cortex moteur</term>
<term>Motoneurones</term>
<term>Mouvement</term>
<term>Muscles squelettiques</term>
<term>Mémoire</term>
<term>Plasticité neuronale</term>
<term>Potentiels post-synaptiques excitateurs</term>
<term>Potentiels évoqués moteurs</term>
<term>Réseau nerveux</term>
<term>Synapses</term>
<term>Tractus pyramidaux</term>
<term>Transmission synaptique</term>
<term>Voies nerveuses</term>
</keywords>
<keywords scheme="MESH" qualifier="physiology" xml:lang="en">
<term>Adaptation, Physiological</term>
<term>Arm</term>
<term>Evoked Potentials, Motor</term>
<term>Excitatory Postsynaptic Potentials</term>
<term>Learning</term>
<term>Memory</term>
<term>Motor Cortex</term>
<term>Motor Neurons</term>
<term>Motor Skills</term>
<term>Movement</term>
<term>Muscle, Skeletal</term>
<term>Nerve Net</term>
<term>Neural Pathways</term>
<term>Neuronal Plasticity</term>
<term>Pyramidal Tracts</term>
<term>Synapses</term>
<term>Synaptic Transmission</term>
</keywords>
<keywords scheme="MESH" qualifier="psychologie" xml:lang="fr">
<term>Musique</term>
</keywords>
<keywords scheme="MESH" qualifier="psychology" xml:lang="en">
<term>Music</term>
</keywords>
<keywords scheme="MESH" xml:lang="en">
<term>Adult</term>
<term>Electromyography</term>
<term>Female</term>
<term>Humans</term>
<term>Male</term>
</keywords>
<keywords scheme="MESH" qualifier="innervation" xml:lang="fr">
<term>Adulte</term>
<term>Bras</term>
<term>Femelle</term>
<term>Humains</term>
<term>Muscles squelettiques</term>
<term>Mâle</term>
<term>Électromyographie</term>
</keywords>
</textClass>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">Musicians not only have extraordinary motor and sensory skills, but they also have an increased ability to learn new tasks compared with non-musicians. We examined how these features are expressed in neurophysiological parameters of excitability and plasticity in the motor system by comparing the results of 11 professional musicians and 8 age-matched non-musicians. Parameters of motor excitability were assessed using transcranial magnetic stimulation (TMS) to measure motor-evoked potentials (MEPs) together with recruitment of corticospinal projections [input-output curve (IOcurve)] and of short-latency intracortical inhibition (SICIcurve). Plasticity, here defined as change of synaptic effectiveness, was tested by measuring MEPs and IOcurves after paired associative stimulation (PAS), which consists of an electric median nerve stimulus repeatedly paired (200 times at 0.25 Hz) with a TMS pulse over the hand motor area. Using an interstimulus interval of 25 ms (PAS25) or 10 ms (PAS10), this leads to long-term potentiation- or long-term depression-like plasticity, respectively. Musicians showed steeper recruitment of MEPs and SICI (IOcurve and SICIcurve). Additionally, PAS25 increased and PAS10 decreased the MEP amplitudes and the slope of the IOcurves significantly more in musicians than in non-musicians. This is consistent with a wider modification range of synaptic plasticity in musicians. Together with the steeper recruitment of corticospinal excitatory and intracortical inhibitory projections, this suggests that they regulate plasticity and excitability with a higher gain than normal. Because some of these changes depend on age at which instrumental playing commenced and on practice intensity, they may reflect an increase in number and modifiability of synapses within the motor area caused by long-term musical practice.</div>
</front>
</TEI>
<pubmed>
<MedlineCitation Status="MEDLINE" Owner="NLM">
<PMID Version="1">17494706</PMID>
<DateCompleted>
<Year>2007</Year>
<Month>06</Month>
<Day>22</Day>
</DateCompleted>
<DateRevised>
<Year>2020</Year>
<Month>02</Month>
<Day>25</Day>
</DateRevised>
<Article PubModel="Print">
<Journal>
<ISSN IssnType="Electronic">1529-2401</ISSN>
<JournalIssue CitedMedium="Internet">
<Volume>27</Volume>
<Issue>19</Issue>
<PubDate>
<Year>2007</Year>
<Month>May</Month>
<Day>09</Day>
</PubDate>
</JournalIssue>
<Title>The Journal of neuroscience : the official journal of the Society for Neuroscience</Title>
<ISOAbbreviation>J Neurosci</ISOAbbreviation>
</Journal>
<ArticleTitle>Motorcortical excitability and synaptic plasticity is enhanced in professional musicians.</ArticleTitle>
<Pagination>
<MedlinePgn>5200-6</MedlinePgn>
</Pagination>
<Abstract>
<AbstractText>Musicians not only have extraordinary motor and sensory skills, but they also have an increased ability to learn new tasks compared with non-musicians. We examined how these features are expressed in neurophysiological parameters of excitability and plasticity in the motor system by comparing the results of 11 professional musicians and 8 age-matched non-musicians. Parameters of motor excitability were assessed using transcranial magnetic stimulation (TMS) to measure motor-evoked potentials (MEPs) together with recruitment of corticospinal projections [input-output curve (IOcurve)] and of short-latency intracortical inhibition (SICIcurve). Plasticity, here defined as change of synaptic effectiveness, was tested by measuring MEPs and IOcurves after paired associative stimulation (PAS), which consists of an electric median nerve stimulus repeatedly paired (200 times at 0.25 Hz) with a TMS pulse over the hand motor area. Using an interstimulus interval of 25 ms (PAS25) or 10 ms (PAS10), this leads to long-term potentiation- or long-term depression-like plasticity, respectively. Musicians showed steeper recruitment of MEPs and SICI (IOcurve and SICIcurve). Additionally, PAS25 increased and PAS10 decreased the MEP amplitudes and the slope of the IOcurves significantly more in musicians than in non-musicians. This is consistent with a wider modification range of synaptic plasticity in musicians. Together with the steeper recruitment of corticospinal excitatory and intracortical inhibitory projections, this suggests that they regulate plasticity and excitability with a higher gain than normal. Because some of these changes depend on age at which instrumental playing commenced and on practice intensity, they may reflect an increase in number and modifiability of synapses within the motor area caused by long-term musical practice.</AbstractText>
</Abstract>
<AuthorList CompleteYN="Y">
<Author ValidYN="Y">
<LastName>Rosenkranz</LastName>
<ForeName>Karin</ForeName>
<Initials>K</Initials>
<AffiliationInfo>
<Affiliation>Sobell Department of Motor Neuroscience and Movement Disorders, Institute of Neurology, London WC1N 3B, United Kingdom. k.rosenkranz@ion.ucl.ac.uk</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Williamon</LastName>
<ForeName>Aaron</ForeName>
<Initials>A</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Rothwell</LastName>
<ForeName>John C</ForeName>
<Initials>JC</Initials>
</Author>
</AuthorList>
<Language>eng</Language>
<PublicationTypeList>
<PublicationType UI="D016428">Journal Article</PublicationType>
<PublicationType UI="D013485">Research Support, Non-U.S. Gov't</PublicationType>
</PublicationTypeList>
</Article>
<MedlineJournalInfo>
<Country>United States</Country>
<MedlineTA>J Neurosci</MedlineTA>
<NlmUniqueID>8102140</NlmUniqueID>
<ISSNLinking>0270-6474</ISSNLinking>
</MedlineJournalInfo>
<CitationSubset>IM</CitationSubset>
<MeshHeadingList>
<MeshHeading>
<DescriptorName UI="D000222" MajorTopicYN="N">Adaptation, Physiological</DescriptorName>
<QualifierName UI="Q000502" MajorTopicYN="N">physiology</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D000328" MajorTopicYN="N">Adult</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D001132" MajorTopicYN="N">Arm</DescriptorName>
<QualifierName UI="Q000294" MajorTopicYN="N">innervation</QualifierName>
<QualifierName UI="Q000502" MajorTopicYN="N">physiology</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D004576" MajorTopicYN="N">Electromyography</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D019054" MajorTopicYN="N">Evoked Potentials, Motor</DescriptorName>
<QualifierName UI="Q000502" MajorTopicYN="N">physiology</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D019706" MajorTopicYN="N">Excitatory Postsynaptic Potentials</DescriptorName>
<QualifierName UI="Q000502" MajorTopicYN="N">physiology</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D005260" MajorTopicYN="N">Female</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D006801" MajorTopicYN="N">Humans</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D007858" MajorTopicYN="N">Learning</DescriptorName>
<QualifierName UI="Q000502" MajorTopicYN="N">physiology</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D008297" MajorTopicYN="N">Male</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D008568" MajorTopicYN="N">Memory</DescriptorName>
<QualifierName UI="Q000502" MajorTopicYN="N">physiology</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D009044" MajorTopicYN="N">Motor Cortex</DescriptorName>
<QualifierName UI="Q000502" MajorTopicYN="Y">physiology</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D009046" MajorTopicYN="N">Motor Neurons</DescriptorName>
<QualifierName UI="Q000502" MajorTopicYN="Y">physiology</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D009048" MajorTopicYN="N">Motor Skills</DescriptorName>
<QualifierName UI="Q000502" MajorTopicYN="Y">physiology</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D009068" MajorTopicYN="N">Movement</DescriptorName>
<QualifierName UI="Q000502" MajorTopicYN="N">physiology</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D018482" MajorTopicYN="N">Muscle, Skeletal</DescriptorName>
<QualifierName UI="Q000294" MajorTopicYN="N">innervation</QualifierName>
<QualifierName UI="Q000502" MajorTopicYN="N">physiology</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D009146" MajorTopicYN="N">Music</DescriptorName>
<QualifierName UI="Q000523" MajorTopicYN="Y">psychology</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D009415" MajorTopicYN="N">Nerve Net</DescriptorName>
<QualifierName UI="Q000502" MajorTopicYN="N">physiology</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D009434" MajorTopicYN="N">Neural Pathways</DescriptorName>
<QualifierName UI="Q000502" MajorTopicYN="N">physiology</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D009473" MajorTopicYN="N">Neuronal Plasticity</DescriptorName>
<QualifierName UI="Q000502" MajorTopicYN="Y">physiology</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D011712" MajorTopicYN="N">Pyramidal Tracts</DescriptorName>
<QualifierName UI="Q000502" MajorTopicYN="N">physiology</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D013569" MajorTopicYN="N">Synapses</DescriptorName>
<QualifierName UI="Q000502" MajorTopicYN="Y">physiology</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D009435" MajorTopicYN="N">Synaptic Transmission</DescriptorName>
<QualifierName UI="Q000502" MajorTopicYN="N">physiology</QualifierName>
</MeshHeading>
</MeshHeadingList>
</MedlineCitation>
<PubmedData>
<History>
<PubMedPubDate PubStatus="pubmed">
<Year>2007</Year>
<Month>5</Month>
<Day>15</Day>
<Hour>9</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="medline">
<Year>2007</Year>
<Month>6</Month>
<Day>23</Day>
<Hour>9</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="entrez">
<Year>2007</Year>
<Month>5</Month>
<Day>15</Day>
<Hour>9</Hour>
<Minute>0</Minute>
</PubMedPubDate>
</History>
<PublicationStatus>ppublish</PublicationStatus>
<ArticleIdList>
<ArticleId IdType="pubmed">17494706</ArticleId>
<ArticleId IdType="pii">27/19/5200</ArticleId>
<ArticleId IdType="doi">10.1523/JNEUROSCI.0836-07.2007</ArticleId>
<ArticleId IdType="pmc">PMC6672373</ArticleId>
</ArticleIdList>
<ReferenceList>
<Reference>
<Citation>Neurosci Lett. 2000 Jan 14;278(3):189-93</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">10653025</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Brain. 2000 Mar;123 Pt 3:572-84</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">10686179</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Brain Res Cogn Brain Res. 2000 Sep;10(1-2):177-83</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">10978706</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Muscle Nerve. 2001 May;24(5):602-13</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11317269</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Neurobiol Learn Mem. 2002 Jan;77(1):63-77</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11749086</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nat Rev Neurosci. 2002 Jun;3(6):473-8</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12042882</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Physiol. 2002 Sep 1;543(Pt 2):699-708</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12205201</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Physiol. 2002 Nov 15;545(1):153-67</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12433957</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Neurophysiol. 2003 May;89(5):2339-45</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12612033</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Physiol. 2003 Sep 1;551(Pt 2):563-73</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12821724</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Neurosci. 2003 Oct 8;23(27):9240-5</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">14534258</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Neuroimage. 2003 Nov;20(3):1817-29</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">14642491</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Clin Neurophysiol. 2003 Dec;114(12):2362-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">14652096</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Eur J Neurosci. 2004 Jan;19(2):473-8</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">14725642</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Neurosci. 2004 Jan 21;24(3):628-33</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">14736848</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Neurosci. 2004 Feb 18;24(7):1666-72</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">14973238</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Cereb Cortex. 2004 May;14(5):555-61</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15054071</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Hum Brain Mapp. 2004 Jul;22(3):206-15</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15195287</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mov Disord. 2004 Nov;19(11):1312-7</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15390002</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mov Disord. 2005 May;20(5):545-51</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15641012</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Brain. 2005 Apr;128(Pt 4):918-31</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15677703</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Hum Brain Mapp. 2005 Jul;25(3):345-52</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15852385</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Appl Physiol (1985). 2005 Oct;99(4):1558-68</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15890749</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Cereb Cortex. 2006 Mar;16(3):376-85</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15930370</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Suppl Clin Neurophysiol. 2004;57:563-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16106657</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nat Neurosci. 2005 Sep;8(9):1148-50</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16116456</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Trends Neurosci. 2006 Apr;29(4):192-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16519953</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Exp Brain Res. 2007 Jan;176(2):332-40</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16896980</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Brain. 2006 Oct;129(Pt 10):2709-21</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16921180</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Eur J Neurosci. 2006 Sep;24(6):1832-4</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17004946</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Hum Brain Mapp. 1997;5(3):206-15</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20408216</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Science. 1995 Oct 13;270(5234):305-7</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">7569982</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Physiol. 1993 Nov;471:501-19</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">8120818</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Neuropsychologia. 1995 Aug;33(8):1047-55</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">8524453</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Neurol Neurosurg Psychiatry. 1995 Nov;59(5):493-8</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">8530933</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Physiol. 1996 Nov 1;496 ( Pt 3):873-81</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">8930851</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Electroencephalogr Clin Neurophysiol. 1997 Oct;105(5):340-4</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">9362997</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Physiol. 1998 Jun 1;509 ( Pt 2):607-18</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">9575308</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
</PubmedData>
</pubmed>
<affiliations>
<list>
<country>
<li>Royaume-Uni</li>
</country>
</list>
<tree>
<noCountry>
<name sortKey="Rothwell, John C" sort="Rothwell, John C" uniqKey="Rothwell J" first="John C" last="Rothwell">John C. Rothwell</name>
<name sortKey="Williamon, Aaron" sort="Williamon, Aaron" uniqKey="Williamon A" first="Aaron" last="Williamon">Aaron Williamon</name>
</noCountry>
<country name="Royaume-Uni">
<noRegion>
<name sortKey="Rosenkranz, Karin" sort="Rosenkranz, Karin" uniqKey="Rosenkranz K" first="Karin" last="Rosenkranz">Karin Rosenkranz</name>
</noRegion>
</country>
</tree>
</affiliations>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=$WICRI_ROOT/Sante/explor/SanteMusiqueV1/Data/Main/Exploration
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 001866 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/Main/Exploration/biblio.hfd -nk 001866 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=    Sante
   |area=    SanteMusiqueV1
   |flux=    Main
   |étape=   Exploration
   |type=    RBID
   |clé=     pubmed:17494706
   |texte=   Motorcortical excitability and synaptic plasticity is enhanced in professional musicians.
}}

Pour générer des pages wiki

HfdIndexSelect -h $EXPLOR_AREA/Data/Main/Exploration/RBID.i   -Sk "pubmed:17494706" \
       | HfdSelect -Kh $EXPLOR_AREA/Data/Main/Exploration/biblio.hfd   \
       | NlmPubMed2Wicri -a SanteMusiqueV1 

Wicri

This area was generated with Dilib version V0.6.38.
Data generation: Mon Mar 8 15:23:44 2021. Site generation: Mon Mar 8 15:23:58 2021